Gas-phase vs. material-kinetic limits on the redox response of nonstoichiometric oxides.

نویسندگان

  • Ho-Il Ji
  • Timothy C Davenport
  • Michael J Ignatowich
  • Sossina M Haile
چکیده

Cerium dioxide, CeO2-δ, remains one of the most attractive materials under consideration for solar-driven thermochemical production of chemical fuels. Understanding the rate-limiting factors in fuel production is essential for maximizing the efficacy of the thermochemical process. The rate of response is measured here via electrical conductance relaxation methods using porous ceria structures with architectural features typical of those employed in solar reactors. A transition from behavior controlled by material surface reaction kinetics to that controlled by sweep-gas supply rates is observed on increasing temperature, increasing volume specific surface area, and decreasing normalized gas flow rate. The transition behavior is relevant not only for optimal reactor operation and architectural design of the material, but also for accurate measurement of material properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Modeling of the High Temperature Water Gas Shift Reaction on a Novel Fe-Cr Nanocatalyst by Using Various Kinetic Mechanisms

In this work the kinetic data demanded for kinetic modeling were obtained in temperatures 350, 400, 450 and 500 oC by conducting experimentations on a Fe-Cr nanocatalyst prepared from a novel method and a commercial Fe-Cr-Cu one. The collected data were subjected to kinetic modeling by using two models derived from redox and associative mechanisms as well as an empirical one. The coefficients o...

متن کامل

Redox behavior of magnetite in the environment: moving towards a semiconductor model

Magnetite (Fe3O4) is a commonly found in the environment and can form via several pathways, including biotic and abiotic reduction of Fe oxides and the oxidation of Fe and Fe. Despite extensive research, the redox behavior of magnetite is poorly understood. In previous work, the extent and kinetics of contaminant reduction by magnetite varied by several orders of magnitude between studies, two ...

متن کامل

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

Experimental and Kinetic Study of CO Oxidation Over LaFe1-xCuxO3 (x=0, 0.2, 0.4, 0.6) Perovskite-Type Oxides

In this paper, catalytic oxidation of CO over the LaFe1-xCuxO3 (x= 0, 0.2, 0.4, 0.6) perovskite-type oxides was investigated. The catalysts were synthesized by sol-gel method and characterized by XRD, BET, FT-IR, H2-TPR and SEM methods. The catalytic activity of catalysts was tested in catalytic oxidation of CO. XRD patterns confirmed the synthesized perovskites to be single-phase perovskite-ty...

متن کامل

Preparation, Physiochemical and Kinetic Investigations of V2O5/SiO2 Catalyst for the Sulfuric Acid Production

V2O5/SiO2 catalyst was utilized to oxidize SO2 to SO3 species in the presence of oxygen mainly for producing sulfuric acid. For this catalyst, the active phase was a mixture of vanadium pentoxide and basic sulfate/pyrosulfate material. This active phase at the reaction temperature behaved as a liquid filling up the pores of the silica support. On the other hand, amounts of the SO3 and V5+ speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 10  شماره 

صفحات  -

تاریخ انتشار 2017